Received:October 11,1986;accepted: March 11, 1987

REACTIONS OF XENON DIFLUORIDE. *PART 6. SOME* REACTIONS OF PHOSPHORUS, ARSENIC AND IODINE COMPOUNDS

KOHRSHED ALAM and ALEXANDER F. JANZEN

Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada)

SUMMARY

The reaction of $X \in F_2$ with some organo-phosphorus, -arsenic and -iodine compounds is described. The products were identified by fluorine nmr spectroscopy and the conditions under which fluorine exchange occurs were briefly investigated. Organoiodine(II1) difluorides are suitable for the conversion of Ph₂Te to Ph₂TeF₂; the decomposition of RIF₂ liberates IF and fluoroalkane.

RESULTS AND DISCUSSION

As a continuation of our studies of the reaction of XeF_2 with main group compounds [l] , we have carried out reactions with some organo-phosphorus, -arsenic and -iodine compounds, and briefly studied the conditions under which fluorine exchange occurs.

The reaction of XeF₂ with MePh₂P and MePh₂As in acetonitrile produced MePh₂PF₂ and MePh₂AsF₂, respectively, while reaction with $2-MeC_6H_4P(NEt_2)$ gave $2-MeC_6H_4PF_2(NEt_2)$.

 MePh_2M + XeF_2 \longrightarrow MePh_2MF_2 + Xe $(M = P, As)$

 $2-\text{MeC}_{6}H_{4}P(NEL_{2})_{2}$ + XeF₂ \longrightarrow 2-MeC₆H₄PF₂(NEt₂)₂ + Xe

0022-1139/87/\$3.50 OElsevier Sequoia/Printed inThe Netherlands

The reaction of XeF₂ with alkyl and aryl iodides [5,6] was extended to CF_3CH_2I , 3,5-C1₂C₆H₃I and 2-CF₃C₆H₄I and, in each case, the corresponding alkyl(aryl)iodine(III) difluoride was formed and identified by 19 F nmr. Excess XeF₂ converted

RI + XeF₂
$$
\longrightarrow
$$
 RIF₂ + Xe
\n(R = CF₃CH₂-, 3,5-Cl₂C₆H₃-, 2-CF₃C₆H₄–)
\n3,5-Cl₂C₆H₃IF₂ to 3,5-Cl₂C₆H₃IF₄.

Oxidative-fluorination of Ph₂Te with $CF_3CH_2IF_2$ or MeIF₂ gave Ph₂TeF₂. The latter compound may also be prepared from $Xef₂$ and Ph₂Te [1].

The finding that MeIF₂ is a source of IF [7] was confirmed by carrying out the decomposition of MeIF₂ in the presence of

 $Ph_2C=CH_2$ $M \text{eIF}_2 \longrightarrow M \text{eF} + \text{IF} \longrightarrow \text{Ph}_2 \text{CFCH}_2 \text{I}$

a trapping agent Ph₂C=CH₂ and identifying the product Ph₂CFCH₂I [aI.

There is no nmr evidence of intermolecular fluorine exchange in freshly prepared samples of MeIF₂, nor is there fluorine exchange between MeIF₂ and excess XeF₂, however, the 1 H nmr triplet of MeIF₂ does collapse to a single peak after a variable induction period of 30-60 min at 2O"C, or in the presence of small amounts of HF or H_2 0, or if MeIF₂ is stored in glass apparatus.

The reaction of XeF₂ with sulfides [9,10] was extended to 4 -methylphenyl sulfide which resulted in x -fluorination, rather than oxidative-fluorination.

 $4-\text{MeC}_{6}H_{4}\text{SCH}_{3}$ + XeF₂ --------- $4-\text{MeC}_{6}H_{4}\text{SCH}_{2}F$ + HF + Xe

Occasionally, an impurity-catalyzed exchange process could be detected in samples of MePh₂PF₂, which resulted in loss of P-F coupling, but this reversible process could be stopped by lowering the temperature to -63'C.

In most instances, samples of $MePh₂AsF₂$ showed no evidence, based on 1 H and 19 F nmr, of intermolecular fluorine exchange, however, treating MePh₂AsF₂ with a solution of HF in CD_2CN changed the 1_H nmr methyl triplet into a broad single peak. This exchange process, which may be attributed to rapid As-F bond cleavage, is reversible and can be slowed down by lowering the temperature to -33'C, whereupon the triplet is again observed. Addition of a small amount of water to MePh₂AsF₂ also changed the ¹H nmr methyl triplet into a single peak.

On the basis of previous studies of impurity-catalyzed fluorine exchange $[2-4]$, it seemed possible that HF or $H₂0$ could generate either 6-coordinate MePh₂AsF₃⁻ or 4-coordinate MePh₂AsF⁺, and these species might then be responsible for exchange in samples of MePh₂AsF₂.

As an indirect test for the presence of MePh₂AsF₃⁻, tetrabutylammonium fluoride was added to MePh₂AsF₂, but no exchange was initiated. Similarly, adding KF in 18-crown ether to MePh₂AsF₂ did not lead to fluorine exchange, thus suggesting that MePh₂AsF₃ is not involved in the exchange process.

Treating MePh₂AsF₂ with PF₅ or BF₃ resulted in the immediate appearance of PF_c or BF_A in the ¹⁹F nmr and the disappearance of the MePh₂AsF₂ signal. The MePh₂AsF⁺ cation, presumably formed in this reaction, could not be directly observed by nmr, but its presence was confirmed by chemical means, namely by adding NaF or CsF, which stopped exchange and resulted in the re-appearance of the MePh₂AsF₂ signal. Therefore the exchange process observed by nmr in samples of MePh₂AsF₂ when HF, H₂0, PF₅ or BF₃ is added, is assigned to the following rapid equilibrium:

 $Meph₂AsF₂$ + $Meph₂AsF⁺$ MePh₂FAs-F-AsFPh₂Me⁺

EXPERIMENTAL

¹H and ¹⁹F nmr spectra were recorded on a Bruker WH90 spectrometer at 90 and 84.66 MHz. Elemental analyses were performed by Galbraith Laboratories, Knoxville, Tenn.

Reaction of XeF₂ with MePh₂As

A solution of $X \in F_2$ (0.64 mmol) in acetonitrile (1 mL) in a syringe was added slowly (about 20 min) to a stirred solution of MePh₂As (0.69 mmol) in acetonitrile (2 mL) held at -20°C in a polytetrafluoroethylene bottle. The reaction mixture was allowed to warm to 20°C and stirred for an additional 20 min. Removal of solvent under vacuum left a white solid which was purified by recrystallization from benzene/n-hexane and identified as MePh₂AsF₂ on the basis of its 19 F nmr [11]. (Found: C, 55.18; H, 4.73; F, 13.25. $C_{1,3}H_{1,3}ASF_2$ requires: C, 55.34; H, 4.64; F, 13.47%).

Reaction of XeF₂ with Phosphorus and Iodine Compounds

The general reaction procedure described for MePh₂As was used for the reactions described below.

The reaction of XeF₂ with MePh₂P gave MePh₂PF₂, identified by 19 F nmr [12] and by its hydrolysis to MePh₂P=0.

Reaction of XeF_2 with $2-MeC_6H_4P(NEt_2)$ ₂ gave $2-MeC_6H_4PF_2$ -(NEt₂)₂: ¹⁹F nmr (CD₂C1₂) -43.2 ppm, $J(\bar{FP})$ = 716 Hz.

Reaction of $X \n\t\epsilon F_2$ (89 mg, 0.52 mmol) with CF_3CH_2I (115 mg, 0.54 mmol) in acetonitrile/chloroform (2 mL), with stirring at 20°C for 2 days gave $CF_3CH_2IF_2:$ ^{19}F nmr -175(IF₂) ppm, -62.9 (CF_2) ppm.

Reaction of Xer_2 (0.12 g, 0.71 mmol) with 3,5-Cl₂C₆H₃I (0.2Og, 0.72 mmol) in chloroform (3 mL) with stirring at 20°C for 2 days gave 3,5-Cl₂C₆H₃IF₂: ^{"P}F nmr (CDCl₃) -175 ppm. Further oxidative-fluorination occurred when a 1:l mixture of XeF_2 and 3,5-Cl₂C₆H₃IF₂ was kept in CHCl₃ at 20°C for 10 days with stirring, to give 3,5-Cl₂C₆H₃IF₄: ¹⁹F nmr -16 ppm.

Reaction of XeF₂ with 2-CF₃C₆H₄I gave 2-CF₃C₆H₄IF₂: ¹⁹F nmr -173 ppm.

The decomposition of MeIF₂ in acetonitrile at 20°C was carried out in the presence of l,l-diphenylethene and the products were Ph_2CFCH_2I , identified by $^{\texttt{--}}$ F and $^{\texttt{--}}$ H nmr [8], and CH₃F, identified by 19 F nmr and ms. Ph_2 CFCH₂I was found to be stable after purification.

Reaction of MePh₂AsF₂ with PF₅ and BF₃

 PF_5 (0.5 mmol) was condensed onto a solution of MePh₂AsF₂ in acetonitrile (0.5 mL) in an nmr tube at -196'C. The reaction mixture was then kept at 20°C for 2 h, after which excess PF₅ was removed and the nmr tube sealed. The 19 F nmr showed the presence of PF₆, but the peak due to MePh₂AsF₂ was not observed. On adding excess NaF, and after several days at 20°C, MePh₂AsF₂ was recovered in about 50% yield.

In a similar experiment, the BF $_A^-$ anion was observed after adding BF_3 to MePh₂AsF₂.

Reaction of $CF_3CH_2IF_2$ and MeIF₂ with Ph₂Te

Ph₂Te (0.31 mmol) was added to $CF_3CH_2IF_2$ (0.42 mmol) in acetonitrile and the reaction mixture stirred at 20°C for 1 h until the yellow colour of Ph_2Te disappeared. The product Ph₂TeF₂ was identified by 19_F nmr [13]. A similar reaction occurred immediately with freshly prepared MeIF₂ to give $Ph_2TeF_2.$

Reaction of XeF₂ with $4-MeC_6H_4SCH_3$

 $X \times F$ ₂ (0.12 g, 0.71 mmol) was added to 4-MeC₆H₄SCH₃ (0.10) g, 0.72 mmol) in CDCl₃ (1 mL) at -20°C, warmed to 20°C and stirred for 1 h. After addition of $(Me₃Si)$ ₂NH to remove HF [2], the product $4-\text{MeC}_{6}H_{4}SCH_{2}F$ was identified by nmr: 19 F nmr -183 ppm, $J(FH) = 52.9 Hz$, $\frac{1}{1}$ nmr 5.6 ppm.

ACKNOWLEDGEMENT

The financial assistance of the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

REFERENCES

- 1 Part 5 of this series: K. Alam and A. F. Janzen, J. Fluorine *Chem. 27 (1985) 467. -*
- 2 R. K. Marat and A. F. Janzen, Can. J. Chem. 55 *(1977) -* 1167.
- 3 R. K. Marat and A. F. Janzen, Can. J. Chem. 55 (1977) 3845.
- 4 C. Wang and A. F. Janzen, Can. J. Chem. 62 (1984) 1563.
- 5 J. A. Gibson and A. F. Janzen, J. Chem. Soc. Chem. Commun. (1973) *739.*
- 6 *M.* Zupan and A. Pollak, J. Fluorine Chem. 1 (1976) 445.
- *7* M. Zupan and A. Pollak, J. Chem. Soc. Perkin Trans I (1976) 1745.
- 8 M. Zupan and A. Pollak, J. Orq. Chem. 41 (1976) 2179.
- 9 M. Zupan, J. Fluorine Chem. 8 (1976) 305.
- 10 R. K. Marat and A. F. Janzen, Can. J. Chem. 55 *(1977) - 3031.*
- 11 I. Ruppert and V. Bastian, Angew. Chem. Int. Ed. Engl. 17 (1978) 214.
- 12 R. Schmutzler, Halogen Chemistry, Vol. 2, Edited by V. Gutmann, Academic Press, New York,(196J) p. 76.
- 13 I. Ruppert, Chem. Ber. 112 (1979) 3023.

184